Copied to
clipboard

G = C42.122D4order 128 = 27

104th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.122D4, C4⋊C411Q8, C4⋊Q824C4, C4.30(C4×Q8), (C2×C4).136D8, C4.31(C4⋊Q8), C22.49(C2×D8), C42.164(C2×C4), C2.5(D4⋊Q8), C2.5(Q8⋊Q8), (C2×C4).121SD16, (C22×C4).765D4, C23.811(C2×D4), C4.10(D4⋊C4), C4.50(C4.4D4), (C22×C8).62C22, C22.76(C2×SD16), C22.4Q16.17C2, (C2×C42).334C22, C22.83(C22⋊Q8), (C22×C4).1422C23, C22.89(C8.C22), C2.24(C23.38D4), C2.10(C23.67C23), (C4×C4⋊C4).28C2, (C2×C4⋊C8).34C2, C4⋊C4.95(C2×C4), (C2×C4⋊Q8).14C2, (C2×C4).277(C2×Q8), C2.24(C2×D4⋊C4), (C2×C4).1362(C2×D4), (C2×C4).767(C4○D4), (C2×C4⋊C4).781C22, (C2×C4).436(C22×C4), (C2×C4).263(C22⋊C4), C22.297(C2×C22⋊C4), SmallGroup(128,720)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.122D4
C1C2C4C2×C4C22×C4C2×C42C4×C4⋊C4 — C42.122D4
C1C2C2×C4 — C42.122D4
C1C23C2×C42 — C42.122D4
C1C2C2C22×C4 — C42.122D4

Generators and relations for C42.122D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a2b-1c-1 >

Subgroups: 284 in 146 conjugacy classes, 72 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2.C42, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C22.4Q16, C4×C4⋊C4, C2×C4⋊C8, C2×C4⋊Q8, C42.122D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, D4⋊C4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C2×D8, C2×SD16, C8.C22, C23.67C23, C2×D4⋊C4, C23.38D4, D4⋊Q8, Q8⋊Q8, C42.122D4

Smallest permutation representation of C42.122D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 51 11 25)(2 52 12 26)(3 49 9 27)(4 50 10 28)(5 126 118 122)(6 127 119 123)(7 128 120 124)(8 125 117 121)(13 33 39 31)(14 34 40 32)(15 35 37 29)(16 36 38 30)(17 112 108 23)(18 109 105 24)(19 110 106 21)(20 111 107 22)(41 67 69 45)(42 68 70 46)(43 65 71 47)(44 66 72 48)(53 83 61 57)(54 84 62 58)(55 81 63 59)(56 82 64 60)(73 77 101 99)(74 78 102 100)(75 79 103 97)(76 80 104 98)(85 93 115 89)(86 94 116 90)(87 95 113 91)(88 96 114 92)
(1 65 37 61)(2 66 38 62)(3 67 39 63)(4 68 40 64)(5 78 108 92)(6 79 105 89)(7 80 106 90)(8 77 107 91)(9 45 13 55)(10 46 14 56)(11 47 15 53)(12 48 16 54)(17 96 118 100)(18 93 119 97)(19 94 120 98)(20 95 117 99)(21 116 128 76)(22 113 125 73)(23 114 126 74)(24 115 127 75)(25 71 35 57)(26 72 36 58)(27 69 33 59)(28 70 34 60)(29 83 51 43)(30 84 52 44)(31 81 49 41)(32 82 50 42)(85 123 103 109)(86 124 104 110)(87 121 101 111)(88 122 102 112)
(1 18 3 20)(2 17 4 19)(5 14 7 16)(6 13 8 15)(9 107 11 105)(10 106 12 108)(21 52 23 50)(22 51 24 49)(25 109 27 111)(26 112 28 110)(29 127 31 125)(30 126 32 128)(33 121 35 123)(34 124 36 122)(37 119 39 117)(38 118 40 120)(41 79 43 77)(42 78 44 80)(45 103 47 101)(46 102 48 104)(53 87 55 85)(54 86 56 88)(57 95 59 93)(58 94 60 96)(61 113 63 115)(62 116 64 114)(65 73 67 75)(66 76 68 74)(69 97 71 99)(70 100 72 98)(81 89 83 91)(82 92 84 90)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,51,11,25)(2,52,12,26)(3,49,9,27)(4,50,10,28)(5,126,118,122)(6,127,119,123)(7,128,120,124)(8,125,117,121)(13,33,39,31)(14,34,40,32)(15,35,37,29)(16,36,38,30)(17,112,108,23)(18,109,105,24)(19,110,106,21)(20,111,107,22)(41,67,69,45)(42,68,70,46)(43,65,71,47)(44,66,72,48)(53,83,61,57)(54,84,62,58)(55,81,63,59)(56,82,64,60)(73,77,101,99)(74,78,102,100)(75,79,103,97)(76,80,104,98)(85,93,115,89)(86,94,116,90)(87,95,113,91)(88,96,114,92), (1,65,37,61)(2,66,38,62)(3,67,39,63)(4,68,40,64)(5,78,108,92)(6,79,105,89)(7,80,106,90)(8,77,107,91)(9,45,13,55)(10,46,14,56)(11,47,15,53)(12,48,16,54)(17,96,118,100)(18,93,119,97)(19,94,120,98)(20,95,117,99)(21,116,128,76)(22,113,125,73)(23,114,126,74)(24,115,127,75)(25,71,35,57)(26,72,36,58)(27,69,33,59)(28,70,34,60)(29,83,51,43)(30,84,52,44)(31,81,49,41)(32,82,50,42)(85,123,103,109)(86,124,104,110)(87,121,101,111)(88,122,102,112), (1,18,3,20)(2,17,4,19)(5,14,7,16)(6,13,8,15)(9,107,11,105)(10,106,12,108)(21,52,23,50)(22,51,24,49)(25,109,27,111)(26,112,28,110)(29,127,31,125)(30,126,32,128)(33,121,35,123)(34,124,36,122)(37,119,39,117)(38,118,40,120)(41,79,43,77)(42,78,44,80)(45,103,47,101)(46,102,48,104)(53,87,55,85)(54,86,56,88)(57,95,59,93)(58,94,60,96)(61,113,63,115)(62,116,64,114)(65,73,67,75)(66,76,68,74)(69,97,71,99)(70,100,72,98)(81,89,83,91)(82,92,84,90)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,51,11,25)(2,52,12,26)(3,49,9,27)(4,50,10,28)(5,126,118,122)(6,127,119,123)(7,128,120,124)(8,125,117,121)(13,33,39,31)(14,34,40,32)(15,35,37,29)(16,36,38,30)(17,112,108,23)(18,109,105,24)(19,110,106,21)(20,111,107,22)(41,67,69,45)(42,68,70,46)(43,65,71,47)(44,66,72,48)(53,83,61,57)(54,84,62,58)(55,81,63,59)(56,82,64,60)(73,77,101,99)(74,78,102,100)(75,79,103,97)(76,80,104,98)(85,93,115,89)(86,94,116,90)(87,95,113,91)(88,96,114,92), (1,65,37,61)(2,66,38,62)(3,67,39,63)(4,68,40,64)(5,78,108,92)(6,79,105,89)(7,80,106,90)(8,77,107,91)(9,45,13,55)(10,46,14,56)(11,47,15,53)(12,48,16,54)(17,96,118,100)(18,93,119,97)(19,94,120,98)(20,95,117,99)(21,116,128,76)(22,113,125,73)(23,114,126,74)(24,115,127,75)(25,71,35,57)(26,72,36,58)(27,69,33,59)(28,70,34,60)(29,83,51,43)(30,84,52,44)(31,81,49,41)(32,82,50,42)(85,123,103,109)(86,124,104,110)(87,121,101,111)(88,122,102,112), (1,18,3,20)(2,17,4,19)(5,14,7,16)(6,13,8,15)(9,107,11,105)(10,106,12,108)(21,52,23,50)(22,51,24,49)(25,109,27,111)(26,112,28,110)(29,127,31,125)(30,126,32,128)(33,121,35,123)(34,124,36,122)(37,119,39,117)(38,118,40,120)(41,79,43,77)(42,78,44,80)(45,103,47,101)(46,102,48,104)(53,87,55,85)(54,86,56,88)(57,95,59,93)(58,94,60,96)(61,113,63,115)(62,116,64,114)(65,73,67,75)(66,76,68,74)(69,97,71,99)(70,100,72,98)(81,89,83,91)(82,92,84,90) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,51,11,25),(2,52,12,26),(3,49,9,27),(4,50,10,28),(5,126,118,122),(6,127,119,123),(7,128,120,124),(8,125,117,121),(13,33,39,31),(14,34,40,32),(15,35,37,29),(16,36,38,30),(17,112,108,23),(18,109,105,24),(19,110,106,21),(20,111,107,22),(41,67,69,45),(42,68,70,46),(43,65,71,47),(44,66,72,48),(53,83,61,57),(54,84,62,58),(55,81,63,59),(56,82,64,60),(73,77,101,99),(74,78,102,100),(75,79,103,97),(76,80,104,98),(85,93,115,89),(86,94,116,90),(87,95,113,91),(88,96,114,92)], [(1,65,37,61),(2,66,38,62),(3,67,39,63),(4,68,40,64),(5,78,108,92),(6,79,105,89),(7,80,106,90),(8,77,107,91),(9,45,13,55),(10,46,14,56),(11,47,15,53),(12,48,16,54),(17,96,118,100),(18,93,119,97),(19,94,120,98),(20,95,117,99),(21,116,128,76),(22,113,125,73),(23,114,126,74),(24,115,127,75),(25,71,35,57),(26,72,36,58),(27,69,33,59),(28,70,34,60),(29,83,51,43),(30,84,52,44),(31,81,49,41),(32,82,50,42),(85,123,103,109),(86,124,104,110),(87,121,101,111),(88,122,102,112)], [(1,18,3,20),(2,17,4,19),(5,14,7,16),(6,13,8,15),(9,107,11,105),(10,106,12,108),(21,52,23,50),(22,51,24,49),(25,109,27,111),(26,112,28,110),(29,127,31,125),(30,126,32,128),(33,121,35,123),(34,124,36,122),(37,119,39,117),(38,118,40,120),(41,79,43,77),(42,78,44,80),(45,103,47,101),(46,102,48,104),(53,87,55,85),(54,86,56,88),(57,95,59,93),(58,94,60,96),(61,113,63,115),(62,116,64,114),(65,73,67,75),(66,76,68,74),(69,97,71,99),(70,100,72,98),(81,89,83,91),(82,92,84,90)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim1111112222224
type++++++-++-
imageC1C2C2C2C2C4D4Q8D4D8SD16C4○D4C8.C22
kernelC42.122D4C22.4Q16C4×C4⋊C4C2×C4⋊C8C2×C4⋊Q8C4⋊Q8C42C4⋊C4C22×C4C2×C4C2×C4C2×C4C22
# reps1411182424442

Matrix representation of C42.122D4 in GL5(𝔽17)

160000
00100
016000
00010
00001
,
160000
016000
001600
00001
000160
,
40000
016000
001600
000314
0001414
,
10000
001300
013000
00001
00010

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,1,0],[4,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,3,14,0,0,0,14,14],[1,0,0,0,0,0,0,13,0,0,0,13,0,0,0,0,0,0,0,1,0,0,0,1,0] >;

C42.122D4 in GAP, Magma, Sage, TeX

C_4^2._{122}D_4
% in TeX

G:=Group("C4^2.122D4");
// GroupNames label

G:=SmallGroup(128,720);
// by ID

G=gap.SmallGroup(128,720);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,848,422,100,1018,248,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b^-1*c^-1>;
// generators/relations

׿
×
𝔽